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Abstracts

Arctic Computation of Monodromy
Duco van Straten

(joint work with K. Jung)

We consider a Lefschetz fibration f : X −→ C with critical set Σ ⊂ X and set
of critical values D := f(Σ) := {p1, p2, . . . , pN} ⊂ C. The fibre over each pi has
a single A1-singularity. By choosing a base point b ∈ C and paths connecting b
the critical values in the usual way we get a natural basis (up to sign) in the
relative group Hn(X , Xb) consisting of Lefschetz thimbles, the traces of the cycles
δi ∈ Hn(X) that vanish at pi, see [6]. The Picard-Lefschetz formula implies that
the monodromy representation ρ : π1(C \D, b) −→ Aut(Hn(X , Xb)) is determined
by the intersection numbers (δi · δj), which are conveniently summarized in the
Stokes-Seifert matrix S, see for example [1].

We are interested in the case where X = (C∗)n and f ∈ C[x±
0 , x±

1 , . . . , x±
n ]

a Laurent-polynomial with Newton-diagram Δ. It follows from the Bernstein-
Koushnirenko formula that the number of critical points N is equal to n!V ol(Δ).

The paper [7] provides a beautiful way of seeing the vanishing cycles and their
intersection for the case n = 2. In this case X := Xb is a Riemann surface of genus
g := number of internal lattice points of Δ with r := number of lattice points on
the boundary of Δ punctures. The exact sequence

0 −→ H2(X ) −→ H2(X , X) −→ H2(X) −→ H1(X ) −→ 0
=↓ =↓ =↓ =↓

0 −→ Z −→ ZN −→ Z2g+r−1 −→ Z2 −→ 0

leads to the relation N = 2g + r, which is equivalent to Pick’s formula.
The amoeba of a set X ⊂ (C∗)2 is defined as the image under the map (C∗)2 −→

R2, (x, y) �→ (log |x|, log |y|) and is well studied, see e.g. [4], [8], [9]. In the Harnack
case the amoeba has g holes and r tentacles that approach its spine, which is a
tropical curve that lies in the tropical plane R2. The map from X to its amoeba
is then two-to-one.

The alga of a set X ⊂ (C∗)2 is the image under the map (C∗)2 −→ R
2, (x, y) �→

(arg(x), arg(y)) ∈ T. Here T = (R/2πZ)2 is the real 2-torus of arguments, which
we call the arctic or argtic plane, which complements to the usual tropical plane.

As an example, let f = x + y + 1/xy. The alga of X = f−1(0) is shown below

Newton diagram of f = x + y + 1/xy and alga of X = f−1(0).
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The bounding straight lines are circles on T and are the images of the asymptotic
boundary circles that go ’around’ the tentacles, and are orthogonal to the boundary
edges of Δ. In the example, the map to its alga is generically one-to-one, and from
the alga one can reconstruct a model of the Riemann surface X , very much like
the construction of a Seifert surface of a link. The map f has (1, 1), (ω, ω),(ω2, ω2)
(ω = exp(2πi/3)) as critical points, which are mapped by the alga map into the
three ’free’ regions complementary to the alga. Moreover, if we move the base
point along a straight line towards one of the critical values, one can observe that
the alga changes its shape and closes up the corresponding hole. From this we see
that the cycles that vanish along these paths are exactly the cycles on the abstract
Riemann surface that surround these free regions. From this one sees that in the
example the vanishing cycles intersect pairwise in three points.

The beautiful observation of [7] is that this state of affairs holds in much greater
generality, although the precise limits of applicability are not clear yet.

One starts by drawing arctic lines, orthogonal to the sides of Δ (as many as the
integral length of that side). These lines come with an orientation in the direction
of the outward normals to Δ. One avoids triple intersections of these lines using
appropriate parallel shifts. We bi-color, according to orientation, the regions that
are enclosed by oriented polygons. (The dual graph is a bipartite graph on the
torus and leads to what is called a brane tiling in the physics literature.)

In this way one can obtain, almost without calculation, the monodromy for
many Newton-diagrams, including the 16 reflexive polytopes in dimension two,
[5]. We give one example.

The alga of −x + y + 1/xy + 1/y + x/y = 0 is close to the above picture, and the
five critical points, ordered according to increasing argument, land under the alga
projection in the five free regions.
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The five critical values and (δ2 · δ3) = ±1
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From this one reads off all intersection numbers and obtains the following
Stokes-Seifert matrix

S =

⎛
⎜⎜⎜⎜⎝

1 −1 −1 0 2
0 1 −1 −1 1
0 0 1 −1 −1
0 0 0 1 −2
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠

which leads to the monodromy h := S−t ·S around infinity that has all eigenvalues
equal to 1, and a single Jordan-block of size two, as it should be.

Mirror symmetry relates these families of Laurent polynomials to certain 3-
dimensional toric singularities Y , which geometrically are cones over toric surfaces
in their anti-canonical embedding. The geometry of the vanishing cycles is then
related to exceptional collections of line bundles on these surfaces, [3]. The first
example f = x+y+1/xy corresponds to Y = C

3/(Z/3), which is the cone over P
2

in its anti-canonical embedding. For general C3/A with A a finite abelian subgroup
of SL3(C), corresponds to the case that Δ a triangle, see [10].
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